肽类药物的PK/PD及ADA研究
标准曲线 |
选择性 |
特异性 |
残留 |
精密度准确度 |
稀释线性和钩状效应 |
平行性 |
稳定性 |
标准曲线 |
基质效应 |
选择性和特异性 |
残留 |
精密度准确度 |
定量下限 |
提取回收率 |
稀释可靠性 |
分析批容量 |
稳定性 |
处理后重进样重现性 |
图3 去氨加压素的质谱图、色谱图及药时曲线图
图4 某注射用小肽类创新药I期临床PK样品分析(A 药物非特异性吸附导致残留严重;B 强洗并使用特殊洗脱试剂后的残留;C定量下限;D药时曲线)
图5 眼科创新多肽药物临床前PK分析
(A定量下限;B标准曲线;C血浆及各组织的药时曲线)
图6 甘精胰岛素质谱图、色谱图和Waters TQ-XS
图7 甘精胰岛素药时曲线图
UPLC-MS/MS方法的技术难点
该类项目对实验室质谱平台的综合能力提出了巨大挑战:
(1) 首先是对于仪器系统整体性能、稳定性及灵敏度有很高要求,该类药物质谱多电荷带电,特殊的流动性条件致使信号响应低,所以仪器灵敏度要高且信号稳定,强吸附性需要仪器液相系统硬件有抗吸附功能,否则残留无法通过;
(2) 该类化合物吸附性严重,在方法验证及样品分析过程中,仪器清洗维护至关重要,设备管理人员需要敏锐观测仪器信号稳定性,密切配合项目组及时清洗重要配件,才能保证项目顺利开展,如遇到严重吸附污染,则需要仪器厂商高效协同解决;
(3) 生物基质干扰严重,需要优选色谱柱,优化良好的梯度条件,与基质中多种干扰物的分离,确保数据科学准确;
(4) 色谱柱消耗量大,色谱柱需要老化和平衡冲洗,确保同一PN序列号色谱柱各分析批及不同PN序列号色谱柱重现性及分析批的成功;
(5) 样品处理过程需要特殊的方法,提高回收率,保证信号稳定可重现,样品处理全程需要特殊试剂进行抗吸附,否则线性等指标很难成功;
(6) 项目运行过程需要高级别项目负责人及操作经验熟练分析人员密切配合才能顺利进行。
临界值 (筛选临界值、确证临界值) |
灵敏度 |
药物耐受 |
精密度 (筛选精密度、确证精密度、滴度精密度) |
特异性 |
选择性 |
钩状效应 |
稳定性 |
重现性 |
稳健性 |
图10 筛选试验和确证试验的灵敏度结果
[1] The “Deemed To Be a License” Provision of the BPCI Act. Questions and Answers Guidance for Industry. FDA. 2020.3.
[2] Haggag Y , El-Gizawy S A , Osman M . Peptides as Drug Candidates: Limitations and Recent Development Perspectives[J]. BioMed Research International, 2018, 8(4).
[3] Lee C L , Harris J L , Khanna K K , et al. A Comprehensive Review on Current Advances in Peptide Drug Development and Design[J]. International Journal of Molecular Sciences, 2019, 20(10).
[4] Peter, W, Latham. Therapeutic peptides revisited[J]. Nature Biotechnology, 1999, 17(8).
[5] McGregor D P. Discovering and improving novel peptide therapeutics, Curr.Opin. Pharmacol, 8(5), 2008, 616-619.
[6] Komalpreet Kaur. et al. Food and Drug Administration (FDA) Approved Peptide Drugs[J]. Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 3(3), 2015, 75 - 88.
[7] Carlota R , Francesco M , Iqbal A J , et al. The Potential Therapeutic Application of Peptides and Peptidomimetics in Cardiovascular Disease[J]. Front Pharmacol, 2016, 7:526.
[8] Muttenthaler M , King G F , Adams D J , et al. Trends in peptide drug discovery[J]. Nature Reviews Drug Discovery, 2021, 20(4).
[9] T Doan, E Massarotti (2005) Rheumatoid Arthritis: An Overview of New and Emerging Therapies. The Journal of Clinical Pharmacology 45(7): 751-762.
[10] Werle M , A Bernkop-Schnürch. Strategies to improve plasma half life time of peptide and protein drugs[J]. Amino Acids, 2006, 30(4):351-367.
[11] PK Tsai, D Volkin, J Dabora, K Thompson, M Bruner, et al. (1993) Formulation Design of Acidic Fibroblast Growth Factor. Pharm Res 10(5): 649-659.
[12] OL Johnson, JL Cleland, HJ Lee, M Charnis, E Duenas, et al. (1996) A month-long effect from a single injection of microencapsulated human growth hormone. Nature medicine 2: 795-799
[13] NB Bam, TW Randolph, JL (1995) Cleland Stability of Protein Formulations: Investigation of Surfactant Effects by a Novel EPR Spectroscopic Technique. Pharm Res 12(1): 2-11.
[14] Deacon CF. Therapeutic strategies based on glucagon-like peptide 1. Diabetes. 2004;53(9):2181–9.
[15] Diao L , Meibohm B . Pharmacokinetics and Pharmacokinetic-Pharmacodynamic Correlations of Therapeutic Peptides[J]. Clinical Pharmacokinetics, 2013, 52(10):855-868.
[16] Zhao L, Ji P, Li Z, et al. The antibody drug absorption following subcutaneous or intramuscular administration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic model. J Clin Pharmacol. 2013;53(3):314–25.
[17] Lin JH. Pharmacokinetics of biotech drugs: peptides, proteins and monoclonal antibodies. Curr Drug Metab. 2009;10(7):661–91.
[18] Brown LR. Commercial challenges of protein drug delivery. Expert Opin Drug Deliv. 2005;2(1):29–42.
[19] Mahato RI, Narang AS, Thoma L, et al. Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst. 2003;20(2–3):153–214.
[20] Antosova Z, Mackova M, Kral V, et al. Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol. 2009;27(11):628–35.
[21] Tang L, Meibohm B. Pharmacokinetics of peptides and proteins. In: Meibohm B, editor. Pharmacokinetics and pharmacodynamics of biotech drugs. Weinheim: Wiley-VCH; 2006.
[22] Alton KB, Kosoglou T, Baker S, et al. Disposition of 14C-eptifibatide after intravenous administration to healthy men. Clin Ther. 1998;20(2):307–23.
[23] Tang L, Persky AM, Hochhaus G, et al. Pharmacokinetic aspects of biotechnology products. J Pharm Sci. 2004;93(9):2184–204
[24] Lam S, See S. Exenatide: a novel incretin mimetic agent for treating type 2 diabetes mellitus. Cardiol Rev. 2006;14(4):205–11.
[25] Rauh M . LC–MS/MS for protein and peptide quantification in clinical chemistry[J]. Journal of Chromatography B, 2012, 883-884(none):59-67.
[26] Kang L, Weng N, Jian W. LC–MS bioanalysis of intact proteins and peptides[J]. Biomedical chromatography, 2020, 34(1): e4633.
[27] Ewles M , Goodwin L . Bioanalytical approaches to analyzing peptides and proteins by LC--MS/MS.[J]. Bioanalysis, 2011, 3(12):1379-1397.
[28] Bronsema, K. J., Bischoff, R., & van de Merbel, N. C. (2013). High-sensitivity LC-MS/MS quantification of peptides and proteins in complex biological samples: the impact of enzymatic digestion and internal standard selection on method performance. Analytical chemistry, 85, 9528-9535.
[29] De Groot AS, Scott DW. Immunogenicity of protein therapeutics.Trends Immunol. 2007;28(11):482–90.
[30] Chirmule N, Jawa V, Meibohm B. Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy. AAPS J. 2012;14(2):296–302
[31] Rosenstock J, Balas B, Charbonnel B, et al. The fate of taspoglutide, a weekly GLP-1 receptor agonist, versus twice-daily exenatide for type 2 diabetes the T-emerge 2 trial. Diabetes Care.2013;36(3):498–504.
[32] Rosenberg AS, Worobec AS (2004) Risk-based approach to immunogenicity concerns of therapeutic protein products, part 2—considering host specific and product specific factors impacting immunogenicity. Biopharm Int. 17(12):34–42.
[33] Ho C-L, Lin Y-L, Chen W-C, et al. Comparison of the immunogenicity of wasp venom peptides with or without carbohydrate moieties. Toxicon. 1998;36(1):217–21.
[34] 药物免疫原性研究技术指导原则. NMPA.
[35] Kaliyaperumal A , Jing S . Immunogenicity Assessment of Therapeutic Proteins and Peptides[J]. Cybernetics and systems analysis, 2009.
北京阳光德美医药科技有限公司成立于2016年11月,属于阳光诺和(股票代码:688621)全资子公司,是一家集大/小分子药物分析为一体的、覆盖临床前到临床全链条的PK/PD研究平台和生物分析平台,可为国内外客户提供国际化水准的、以临床价值和患者需求为导向的创新药项目研发服务,包括:药代动力学生物分析服务、免疫原性生物分析服务、药效学和生物标志物研究服务及定量药理学研究服务。 专注于解决客户药代药效研究及生物分析中所遇到的挑战,致力于打造国内领先的集大、小分子创新药物临床前以及临床研究于一体的生物分析和PK/PD研究平台。
丰台区海鹰路8号金伟凯2号楼3层,010-83611820
丰台区海鹰路8号金伟凯3号楼8层,010-83611820
商务联系: 王老师 13701034516,wangmh@bjscinovo.com
刘老师 13581711841,liuzq@bjscinovo.com